Table of Contents
1Scope
2References
3Definitions
4Abbreviationsandacronyms
5IntroductiontoQ-factor
6RequirementsofQ-factormeasurementequipment
6.1Physicalinterfacesandbitrates
6.2Accuracyrequirementsandacceptancetests
6.3Presentationofresults
7Miscellaneousfunctions
7.1Remotecontrolport
7.2TMNinterface
8Operatingconditions
8.1Environmentalconditions
8.2Behaviourincaseofpowerfailure
9Bibliography
10Backgroundreading
AnnexA-MathematicalprocedurefortheQ-factorevaluation
withthedecisionlevelshiftingmethod
A.1Preconditions
A.2TheoreticaldependenceoftheBERonthethreshold
A.3SeparationofBER(0)andBER(1)
A.4Calculationoftheresults
AppendixI-Q-factortheory
I.1Q-factortheory
I.2Approximationoftheerfcfunction
I.3Inverseerfc(x),erfc[-1](x)
AppendixII-Opticalchannelperformanceandcharacteristics
II.1Opticalchannelperformance
II.2Opticalchannelcharacteristics
AppendixIII-Imperfectionstobeconsideredunderconditions
foundinpractice
III.1Analogueimpairments
III.2Patterndependencies
III.3Receivercharacteristics
III.4Samplephaseposition
III.5EffectsontheQ-factor
AppendixIV-ImplementationsuggestionsforQFME
IV.1Blockdiagrams
IV.2Functionaldescription
IV.3Measurementmodes
AppendixV-Additionalverificationtests
V.1Receiverpulseresponse Abstract
Describes the requirements of Q-factor measurement equipment (QFME) currently based on the level shifting method used for estimating the digital transmission performance of an optical channel.